NATURESS GEOMETRS SUCCULENTS

 3
$\frac{1}{4}$
2
2 $\frac{4(5)}{\left.2 x^{2}\right)}$ 3
3
3
1等

"Beauty is in the eye of the beholder."
Molly Bawn, by Margaret Wolfe Hungerford, 1878

Nature's Geometry: Succulents
Copyright ©2019 Russel Ray. All rights reserved
No part of this publication may be reproduced, distributed, No part of this publication may be reproduced, distribut photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the autho except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, contact Russel Ray
Russel Ray
Double R Creations \& Photographic Art
russelrayphotos $@$ gmail.com
Blog at russelrayphotos2.com
Book Design: Russel Ray
Text \& Photographs: Russel Ray except where noted Printed and bound in the United States by BookBaby ISBN 978-1-54398-837-6

We will use only the first eleven numbers in the Fibonacci sequence:
$1,1,2,3,5,8,13,21,34,55,89$ They are all we need to show how beautiful and universal nature's geometry is.

When we look at the number 1, it seems to be logical that it exists in nature- $\mathbf{1}$ plant, 1 flower, 1 bug. If something exists, then by definition there has to be $\mathbf{1}$. What is beautiful here is that where Mother \& Father Nature here is that where Mother \& Father Nature This 2 more or something, only 1 show can originate out of 1 areole the most I have

counted in 1 areole is 23 spines! There also are many succulents that have spines.

The number 3 is where Mother \& Father Nature start to shine because it's easy to make triangles, stars, and pentagons. Who doesn't like the beauty of triangles, stars, and pentagons? In the picture below of the areoles on my Pachypodium lamerei, each with 3 spines, it's easy to visually connect the points of the spines and see a triangle.

Now we'll see how Mother \& Father Nature took those 3's and turned them into 5's to get
better and more beautiful triangles, stars, and pentagons. The Asclepiadaceae family
is my favorite for beautiful stars because the flowers are big, beautiful, and unique.

The higher numbers are more difficult to find, which makes them more fun to try to find, and much more satisfying when you actually do find them. Let's explore 8 , beginning with the plants themselves.

I have been studying Fibonacci numbers since April 1973, and I started studying them in nature the west of the Miscissippi River as our high school graduation present to ourselves Flowers with a lot of petals always have piqued to ourselves.
Flowers with a lot of petals always have piqued my interest. have a lot of Echinopsis huascha hybrids in my gardens, and for disassembly, all in the name of unpaid research

My home abuts a San Diego Open Space Preserve. In addition to a few billion rabbits and ground squirrels, there are billions of acres of Carpobrotus edulis, perhaps at the top of my Least Favorite Plants list. It is what I call an invasive weed, far worse than the Kalanchoe Twins (K. daigremontiana and K. delagoensis). However, for the purposes of my research here, I love it!

I accidentally climbed over the fence and confiscated two yellow and three purple flowers. Then I proceeded to disassemble them to see how many petals they had. I was fairly certain they had more than 34. Could I get to 55? Results are below the pictures.

t is well known in the Fibonacci world that daisies have $13,21,34,55$, or 89 petals, depending on the species. Sunflowers and dahlias also are found with 89 petals. I hav ot found 89 in the world of succulents, but I would be willing to bet that it's there among the stamens of some f the larger flowers, specifically Carnegiea gigantea but also echinopsis and epiphyllum

Phyllotaxis

Triangles

Your mission, should you decide to accept it is to find all of the triangles in these five pictures. You're on your own.

